skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fattahpour, Seyyedfaridoddin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present the successful synthesis and characterization of a one-dimensional high-entropy oxide (1D-HEO) exhibiting nanoribbon morphology. These 1D-HEO nanoribbons exhibit high structural stability at elevated temperatures (to 1000°C), elevated pressures (to 12 gigapascals), and long exposure to harsh acid or base chemical environments. Moreover, they exhibit notable mechanical properties, with an excellent modulus of resilience reaching 40 megajoules per cubic meter. High-pressure experiments reveal an intriguing transformation of the 1D-HEO nanoribbons from orthorhombic to cubic structures at 15 gigapascals followed by the formation of fully amorphous HEOs above 30 gigapascals, which are recoverable to ambient conditions. These transformations introduce additional entropy (structural disorder) besides configurational entropy. This finding offers a way to create low-dimensional, resilient, and high-entropy materials. 
    more » « less
    Free, publicly-accessible full text available May 29, 2026
  2. Thermal radiation emission poses a challenge for using most existing ceramics for thermal environmental barrier coatings of gas-turbine engines operating at temperatures approaching 1500 °C and beyond. This study presents a strategy for photon transport mitigation in fully dense ceramic composites by increasing the refractive index mismatch between the matrix and particle oxides. We investigate this strategy by analyzing radiative properties in 118 different rare-earth pyrosilicate–pyrochlore ceramic composites. We use density functional theory to predict the optical properties of homogeneous oxides and Lorentz–Mie theory to model scattering at the interfaces of the composite. Our findings demonstrate that increasing the refractive mismatch between the matrix and oxide phases can significantly reduce radiative heat flux. Furthermore, we show that additional thermal radiation suppression can be achieved by increasing the particle size. Our theoretical investigation has the potential to aid in the discovery of new coating ceramic composites and guide their microstructural design. 
    more » « less